FORM-B: INFORMATION FOR SCIENTIFIC COMMUNITY

01.	Experiment No. and Title	:	13.4.3.55 and Rapid multiplication of <i>Dendrocalamus</i>
	(As per CJA)		hamiltonii through invitro regeneration techniques from
			nodal explants
02.	Budget Head	:	352/12029
03.	Collaborative department, if any	:	Department of Forest Biology and Tree Improvement,
			College of Forestry, NAU, Navsari
04.	Location and Agro-climatic sub-region	:	Tissue Culture Facilities (ELP), College of Forestry,
			NAU, Navsari and AES – III (Heavy Rainfall Zone),
			South Gujarat.
05.	Background information	:	Bamboo, monocotyledonous plant of the family
			Poaceae, is an important forest tree with multifarious
			use in daily life so called poor's Man timber and
			having largest use in the paper and pulp. Large scale
			use of bamboo in paper and pulp industry has led to a
			situation where replacements and raising of new stands
			has ranen away bellind the rate at which the ballboo
			cums are being cut.
			Bamboos are propagated through
			1. Seed, but has long and unpredictable flowering
			habit, low viabily and has inborn microbial infestation.
			2. Vegetative Propagation, but not efficient on
			economic scale.(offset and culms cutting)
			To cope with the increasing need for propagating
			material, the use of in-vitro technique is being
			followed. So by successful micro-propagation, elite
			bamboo species could be multiplied according to the
			commercial need
			Dendrocalamus hamiltonii
			Habitat & distribution
			Occurs in fine-textured soil in semi-evergreen forests
			Grows abundantly and well in the North Fast and
			Himachal Pradesh
			Culm
			The culm is large, up to 30 m tall, dull green.
			Flowering
			The flowering cycle is 30-40 years. commonly and
			periodically
			Uses
			Used as edible shoot, for roofing and construction
			purposes.
06.	Objectives	:	Standardizing the micro propagation technique for
			rapid multiplication of Dendrocalamus hamiltonii
			through <i>invitro</i> regeneration techniques from nodal
			explant

07.	Principal investigator and associates	:	PI:
			Dr. Jayesh Pathak, Assistant Professor (Agroforestry)
			Co-PIs:
			Dr. S. K. Jha, Associate Professor (Forest Biology) &
			HoD - FBTI
			Dr. M. B. Tandel, Assistant Professor (Forestry) &
			HoD - SAF
			Dr. V. B. Patel, Assistant Professor (Biotechnology)
			Dr. R. S. Chauhan, Assistant Professor
			(Tree Improvement)
08.	Experimental period	:	From <u>2017</u> to <u>2023</u>
09.	Season of experiment	:	NA
10.	Crop and Variety	:	Bamboo Species - Dendrocalamus hamiltonii
11.	Experimental details		

(a)	Treatments	:	(a) Contamination Control Treatments
			C_1 - Mercuric Chloride (0.1%) for 3 Min
			C_2 - Mercuric Chloride (0.1%) for 4 Min
			C_3 - Mercuric Chloride (0.1%) for 5 Min
			C ₄ - Absolute Alcohol (70%) for 30 Sec + Mercuric
			Chloride (0.1%) for 3 Min
			C_5 - Absolute Alcohol (70%) for 30 Sec + Mercuric
			Chloride (0.1%) for 4 Min
			C_6 - Absolute Alcohol (70%) for 30 Sec + Mercuric
			Chloride (0.1%) for 5 Min
			(b) Shoot Multiplication Treatments
			$T_1 - MS + 0.5 mg/l BAP$
			$T_2 - MS + 1.0 mg/l BAP$
			$T_3 - MS + 2.0 \text{ mg/l BAP}$
			T_4 - MS + 3.0mg/l BAP
			T ₅ - MS + 4.0 mg/l BAP
			(c) Rooting Treatments
			$T_1 - MS + 1 mg/l IBA + 0.25 \%$ Activated charcoal
			$T_2 - MS + 0.1\%$ IBA+ 2% Sucrose
			$T_3 - MS + 1 mg/l IBA + 1 mg/l NAA + 2\%$ Sucrose
			$T_4 - MS + 1 \text{ mg/l IBA} + 1 \text{ mg/l NAA}$
			$T_5 - MS + 1.5 mg/l NAA + 3 mg/l IBA + 2\%$
			Sucrose
			$T_6 - MS + 1 m\sigma/l NAA + 0.3\%$ Activated charcoal
			$T_7 - MS + 20 \text{ mg/l IBA}$
			$T_8 - MS + 0.5 mg/I IBA$
			$T_0 - MS + 1 mg/l BAP + 3 mg/l NAA$
			$T_{10} - MS + 1.8 \text{ mg/l NAA} + 10 \text{ mg/l Coumarin}$
			$T_{10} = MS \pm 1.8 mg/1 NA A$
			$T_{11} = MS + 1 mg/I RAP + 1 mg/I NAA + 3% Activated$
			$r_{12} = 105 \pm 1 \text{ mg/r DAr} \pm 1 \text{ mg/r NAA} \pm 5\%$ Activated
			$\mathbf{T} = \mathbf{M}\mathbf{S} + 2 \mathbf{m}\mathbf{a}/(\mathbf{N}\mathbf{A} + 20) \mathbf{S} \mathbf{u}\mathbf{a}\mathbf{n}\mathbf{c}\mathbf{a}$
			$\mathbf{I}_{13} = \mathbf{MS} + 5 \operatorname{IIIg/I} \mathbf{NAA} + 2\% \operatorname{Suclose}$ $\mathbf{T}_{13} = \mathbf{MS} + 0.2 \operatorname{ma} / \mathbf{NAA} + 0.2 \operatorname{ma} / \mathbf{IDA} + 10 \operatorname{ma} / \mathbf{IDA}$
			$\Gamma_{14} - MS + 0.2 \text{ mg/I NAA} + 0.2 \text{ mg/I IBA} + 10 \text{ mg/I}$
			Counterin T = 16 MS + 1.9 ma/l NAA + 2 ma/l IDA + 10 ma/l
			$\Gamma_{15} = \frac{1}{2} \text{ InS} + 1.0 \text{ Ing/I INAA} + 2 \text{ Ing/I IDA} + 10 \text{ Ing/I}$
			Countain + 2 % Success $T_{re} = \frac{1}{MS} + 0.5 \text{ mg/l} \text{ IB } \Lambda + 0.5 \text{ mg/l} \text{ NA } \Lambda + 2.96$
			$1_{16} - 72$ WS + 0.5 IIIg/1 IDA + 0.5 IIIg/1 INAA + 2 70 Sucrose
			Trace 16 MS ± 1 mg/l IBA ± 0.5 mg/l NAA ± 2.9
			$1_{17} - 72$ MB + 1 IIIg/1 IDA + 0.3 IIIg/1 NAA + 2 70 Sucrose
			$\mathbf{T}_{10} = \frac{1}{2} \mathbf{MS} \pm 0.5 \mathrm{mg/l} \mathrm{NAA}$
			$T_{18} = \frac{1}{2} MS + 0.5 mg/1 NAA$ $T_{18} = \frac{1}{2} MS \pm 1 mg/1 NAA$
			$T_{20} = \frac{1}{2} MS + 1 mg/I IRA$
			$T_{20} = \frac{1}{2} MS + 2 mg/I IBA$
			$T_{22} - MS + 3 \text{ mg/l IBA}$
			$T_{23} - MS + 4 \text{ mg/l IBA}$
			$T_{24} - MS + 5 mg/l IBA$
			$T_{25} - \frac{1}{2} MS + 3 mg/l IBA$
			T_{26}^{-1} - $\frac{1}{2}$ MS + 3 mg/l IBA + 3 mg/l NAA + 2% Sucrose
			T_{27} - $\frac{1}{2}$ MS + 3 mg/l IBA + 10 mg/l Coumarin
			$T_{28} - \frac{1}{2} MS + 0.2 mg/l IB$
			\mathbf{T}_{29} - $\frac{1}{2}$ MS + 1 mg/l IBA + 1 mg/l NAA
			T_{30} - $\frac{1}{2}$ MS + 2 mg/l IBA + 1 mg/l NAA
			T_{31} - $\frac{1}{2}$ MS + 5 mg/l IBA + 1 mg/l NAA
			T_{32} - MS + 8µM BAP + 1µM NAA + 100 µM IBA
			T_{33} - $\frac{1}{2}$ MS + 8 μ M BAP + 1 μ M NAA + 100 μ M IBA

				(d) Acclimatization Treatments			
				A_1 - FYM + Soil + Sand (1:1:1)			
				A ₂ - FYM+ Soil (1:1)			
				$A_3 - FYM + Soil + Coco Coir (1:1:1)$			
				A_4 - Soil + sand + Vermicompost (1:1:1)			
	(b)	Experimental Design	:	Completely Randomized Design			
	(c)	Replications	:	3			
	(d)	Plot size (if applicable)	:	Grossm xm			
				Net			
	(e)	Spacing	:	NA			
	(f)	Seed rate (kg/ha)	:	NA			
	(g)	Manuring					
		(i) FYM (t/ha)	:	NA			
		(ii) N, P and K (kg/ha)	:	NA			
12.	Yea	ar-wise cultural details					
	(a)	Date of					
		(i) Sowing	:	NA			
		(ii) Harvesting	:	NA			
	(b)	Number of irrigations (Year-wise)	:	NA			
	(c)	Number of weedings	:	NA			
	(d)	Number of inter culturing	:	NA			
	(e)	Previous crop and fertilizer applied (year-wise)	:	NA			
13.	Soi	l analysis (if applicable) Depth-wise		:			
	Par	ameters		Initial After			
	(a)	pН	:	NA NA			
	(b)	EC	:	NA NA			
	(c)	Organic carbon	:	NA NA			
	(d)	Available N	:	NA NA			
	(e)	Available P ₂ O ₅	••	NA NA			
	(f)	Available K ₂ O	••	NA NA			
	(g)	Any other		NA NA			
14.	Inp	ut analysis		NA			
15.	Yea	ar-wise general conditions					
	(a)	Pest and diseases	:	NA			
	(b)	Plant stand	:	NA			
	(c)	Seasonal conditions	:	NA			
	(d)	Rainfall distribution	:	NA			
16.	Res	sults (Table/s with statistical analysis	:				
	and	Interpretation)					
	RE	SULTS AND INTERPRETATION:					
16.1	Col	ntamination Control					

1611	\triangleright	Mean data for contamination control treatments of Dendrocalamus hamiltonii by invitro
10.1.1	ŕ	regeneration techniques from nodal explants are presented in following table 1 (a) (c) (d) and (e)
		Maximum number of shoots (2.21) length of longest shoot (5.35 cm) highest establishment per
		cent (92.22 %) and lowest contamination per cent (7.78 %) were recorded significantly in treatment
		C_{c} Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min in pooled
		C_6 - Absolute Alcohol (70%) for 50 Sec + Mercure Chloride (0.1%) for 5 whit in pooled
	~	analysis. Also, similar trend was followed in individual years.
	≻	Whereas, minimum number of days to sprout of shoot was recorded in C4 - Absolute
		Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min (5.21 days) in pooled
		analysis [table 1 (b)]. Similar trend was followed for individual years. However, individual
		years and interaction effect $(Y \times T)$ was found non-significant.
	\triangleright	Moreover, treatment C ₅ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for
		4 Min followed for number of shoots (1.83), establishment per cent (79.44 %) and
		contamination per cent (20.56 %) in pooled analysis. Similar trend was followed for
		individual years for all above parameters.
		While treatment C_1 - Mercuric Chloride (0.1%) for 3 Min followed for number of days
	Ĺ	taken to sprout (5.33) and C_3 - Mercuric Chloride (0.1%) for 5 Min for length of longest
		shoot in pooled analysis (4.77 cm). Similar trend was followed for individual years for both
		parameters
	Δ	Whereas shortest length of shoot (3.00 cm) lowest establishment (58.80 %) and highest
	1	whereas, shortest length of short (3.50 cm), lowest establishment (38.89 $\%$) and ingrest
		contamination (41.11%) were recorded in C4 - Absolute Alcohol (70%) for 50 Sec + Mercuric
		Chloride (0.1%) for 3 Min for pooled analysis. Similar trend was followed for individual
		years for all above parameters.
	≻	While, minimum number of shoots were recorded in C_1 - Mercuric Chloride (0.1%) for 3
		Min (1.53) and maximum days taken for spouting of shoot were recorded in C ₅ - Absolute
		Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 4 Min (5.54) in pooled analysis
		and similar trend was followed in individual years for both parameters.
	\triangleright	However, interaction effect $(Y \times T)$ was found non-significant for all contamination control
		parameters.
16.2	Sh	oot Multiplication
16.2.1	\triangleright	Mean data for multiplied shoot of <i>Dendrocalamus hamiltonii</i> by <i>invitro</i> regeneration techniques
		from nodal explants are presented in table 2. Maximum number of multiplied shoots was recorded
		significantly in shoot multiplication treatment $T_5 - MS + 4.0 \text{ mg/l BAP}$ in individual years
		(10.28 & 10.61) and in pooled analysis (10.44) which, was followed by $T_4 - MS + 3.0 mg/l$
		BAP in individual years (7.56 & 7.77) and in pooled analysis (7.66).
	\triangleright	Whereas, minimum number of multiplied shoots were recorded in T_1 - MS + 0.5 mg/l BAP
		in individual years (3.84 & 3.77) and pooled analysis (3.80).
	\triangleright	While, interaction effect $(Y \times T)$ was found non-significant.
16.3	Ro	ot initiation and establishment
16.3.1	\succ	Mean data for rooting per cent, number of roots and length of longest root of Dendrocalamus
		hamiltonii by invitro regeneration techniques from nodal explants are presented in table 3. There
		were 33 rooting treatment combinations applied for rooting parameters of <i>Dendrocalamus</i>
		<i>hamiltonii</i> . Among them, only $T_{26} - \frac{1}{2}$ MS + 3 mg/l IBA + 3 mg/l NAA + 2% Sucrose have
		responded for rooting parameters. Whereas, another treatment combinations were not responding
16.4		for rooting.
16.4	AC	climatization / Hardening
10.4.1		Nean data for acclimatization of <i>Dendrocalamus hamiltonii</i> by <i>invitro</i> regeneration techniques
		trom nodal explants are presented in table 4. Highest survival per cent were recorded
		significantly in acclimatization treatment A_4 - Soil + sand + Vermicompost (1:1:1) in
		individual years (78.89 % & 81.11 %) and in pooled analysis (80.00 %) which was
		followed by A ₁ - FYM + Soil + Sand (1:1:1) in individual years (64.44 % & 62.22 %) and
		pooled analysis (63.33 %).
	\succ	Whereas, lowest survival per cent were recorded in A ₂ - FYM+ Soil (1:1) individual years
		(43.33 % & 41.11 %) and pooled analysis (42.22 %).
	\triangleright	While interaction effect $(\mathbf{Y} \times \mathbf{T})$ was found non-significant

Table 1 (a). Effect of contamination control treatments on number of shoots of Dendrocalamus hamiltonii

Treatments	2022	2023	Pooled
C ₁ - Mercuric Chloride (0.1%) for 3 Min	1.36	1.70	1.53
C ₂ - Mercuric Chloride (0.1%) for 4 Min	1.48	1.81	1.64
C ₃ - Mercuric Chloride (0.1%) for 5 Min	1.59	1.92	1.76
C ₄ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min	1.58	1.97	1.77
C5 - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 4 Min	1.66	2.01	1.83
C ₆ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min	2.10	2.32	2.21
SEM (±)	0.048	0.034	0.029
CD @ 5%	0.15	0.10	0.09
SEM (Y X T)			0.042
CD (Y X T) @ 5%			NS
CV %	5.14	2.98	4.02

 Table 1 (b). Effect of contamination control treatments on number of days taken for sprouting of Dendrocalamus hamiltonii

Treatments	2022	2023	Pooled				
C_1 - Mercuric Chloride (0.1%) for 3 Min	5.28	5.38	5.33				
C ₂ - Mercuric Chloride (0.1%) for 4 Min	5.28	5.41	5.34				
C ₃ - Mercuric Chloride (0.1%) for 5 Min	5.44	5.58	5.51				
C ₄ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min	5.13	5.28	5.21				
C5 - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 4 Min	5.53	5.55	5.54				
C ₆ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min	5.39	5.31	5.35				
SEM (±)	0.134	0.105	0.085				
CD @ 5%	NS	NS	NS				
SEM (Y X T)			0.012				
CD (Y X T) @ 5%			NS				
CV %	4.33	3.35	3.87				

Table 1 (c). Effect of contamination control treatments on length of longest shoot (cm) of Dendrocalamus hamiltonii

Treatments	2022	2023	Pooled
C ₁ - Mercuric Chloride (0.1%) for 3 Min	4.20	4.45	4.33
C ₂ - Mercuric Chloride (0.1%) for 4 Min	4.01	4.10	4.06
C ₃ - Mercuric Chloride (0.1%) for 5 Min	4.87	4.68	4.77
C4 - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min	3.95	3.86	3.90
C5 - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 4 Min	4.54	4.57	4.55
C ₆ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min	5.35	5.37	5.36
SEM (±)	0.098	0.134	0.083
CD @ 5%	0.30	0.41	0.24
SEM (Y X T)			0.118
CD (Y X T) @ 5%			NS
CV %	3.80	5.16	4.54

Table 1 (d). Effect of contamination control treatments on establishment per cent (%) of Dendrocalamus hamiltonii

Treatments	2022	2023	Pooled
C_1 - Mercuric Chloride (0.1%) for 3 Min	62.22	57.78	60.00
C ₂ - Mercuric Chloride (0.1%) for 4 Min	67.78	64.44	66.11
C ₃ - Mercuric Chloride (0.1%) for 5 Min	73.33	70.00	71.67
C4 - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min	61.11	56.67	58.89
C ₅ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 4 Min	80.00	78.89	79.44
C ₆ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min	93.33	91.11	92.22
SEM (±)	1.757	1.434	1.134
CD @ 5%	5.41	4.420	3.31
SEM (Y X T)			1.604
CD (Y X T) @ 5%			NS
CV %	4.17	3.56	3.89

Table 1 (e). Effect of contamination control treatments on contamination per cent (%) of Dendrocalamus hamiltonii

Treatments	2022	2023	Pooled
C ₁ - Mercuric Chloride (0.1%) for 3 Min	37.78	42.22	40.00
C ₂ - Mercuric Chloride (0.1%) for 4 Min	32.22	35.56	33.89
C ₃ - Mercuric Chloride (0.1%) for 5 Min	26.67	30.00	28.33
C ₄ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min	38.89	43.33	41.11
C ₅ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 4 Min	20.00	21.11	20.56
C_6 - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min	6.67	8.89	7.78
SEM (±)	1.757	1.434	1.134
CD @ 5%	5.41	4.420	3.31
SEM (Y X T)			1.604
CD (Y X T) @ 5%			NS
CV %	11.25	8.23	9.71

Table 2. Effect of shoot multiplication treatments on number of multiplied shoot of Dendrocalamus hamiltonii

Treatments	2022	2023	Pooled
T ₁ - MS + 0.5 mg/l BAP	3.84	3.77	3.80
T2 - MS + 1.0 mg/l BAP	4.49	4.86	4.67
T ₃ - MS + 2.0 mg/l BAP	5.24	5.63	5.44
T ₄ - MS + 3.0mg/l BAP	7.56	7.77	7.66
T 5 - MS + 4.0 mg/l BAP	10.28	10.61	10.44
SEM (±)	0.191	0.246	0.156
CD @ 5%	0.60	0.77	0.46
SEM (Y X T)			0.220
CD (Y X T) @ 5%			NS
CV %	5.26	6.53	5.95

Table 3. Effect of rooting treatments on various rooting parameters of Dendrocalamus hamiltonii

Treatments	Rooting percentages (%)		No. of roots		Length of longest root (cm)	
	2022	2023	2022	2023	2022	2023
$T_1 - MS + 1 mg/l IBA + 0.25 \%$ Activated	0.00	0.00	0.00	0.00	0.00	0.00
charcoal						
$T_2 - MS + 0.1\%$ IBA+ 2% Sucrose	0.00	0.00	0.00	0.00	0.00	0.00
$T_3 - MS + 1 mg/l IBA + 1 mg/l NAA + 2\%$	0.00	0.00	0.00	0.00	0.00	0.00
Sucrose						
$T_4 - MS + 1 mg/l IBA + 1 mg/l NAA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_5 - MS + 1.5 mg/l NAA + 3 mg/l IBA + 2\%$	0.00	0.00	0.00	0.00	0.00	0.00
Sucrose						
$T_6 - MS + 1 mg/l NAA + 0.3\%$ Activated	0.00	0.00	0.00	0.00	0.00	0.00
charcoal						
$T_7 - MS + 20 mg/l IBA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_8 - MS + 0.5 mg/l IBA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_9 - MS + 1 mg/l BAP + 3 mg/l NAA$	0.00	0.00	0.00	0.00	0.00	0.00
T_{10} – MS + 1.8 mg/l NAA + 10 mg/l Coumarin	0.00	0.00	0.00	0.00	0.00	0.00
$T_{11} - MS + 1.8 \text{ mg/l NAA}$	0.00	0.00	0.00	0.00	0.00	0.00
$T_{12} - MS + 1 mg/l BAP + 1 mg/l NAA + 3\%$	0.00	0.00	0.00	0.00	0.00	0.00
Activated charcoal						
T_{13} – MS + 3 mg/l NAA+ 2% Sucrose	0.00	0.00	0.00	0.00	0.00	0.00
$T_{14} - MS + 0.2 \text{ mg/l NAA} + 0.2 \text{ mg/l IBA} + 10$	0.00	0.00	0.00	0.00	0.00	0.00
mg/l Coumarin						
$T_{15} - \frac{1}{2} MS + 1.8 mg/l NAA + 2 mg/l IBA + 10 mg/l Coumarin + 2 % Sucrose$	0.00	0.00	0.00	0.00	0.00	0.00
$T_{16} - \frac{1}{2}$ MS + 0.5 mg/l IBA + 0.5 mg/l NAA + 2	0.00	0.00	0.00	0.00	0.00	0.00
% Sucrose	0.00	0.00	0.00	0.00	0.00	0.00
$T_{17} - \frac{1}{2}MS + 1 mg/1 IBA + 0.5 mg/1 NAA + 2$ % Sucrose	0.00	0.00	0.00	0.00	0.00	0.00
$T_{18} - \frac{1}{2}$ MS + 0.5 mg/l NAA	0.00	0.00	0.00	0.00	0.00	0.00
$T_{19} - \frac{1}{2}MS + 1 mg/l NAA$	0.00	0.00	0.00	0.00	0.00	0.00
T ₂₀ - ½ MS + 1 mg/l IBA	0.00	0.00	0.00	0.00	0.00	0.00
$T_{21} - \frac{1}{2}MS + 2 mg/l IBA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_{22} - MS + 3 mg/l IBA$	0.00	0.00	0.00	0.00	0.00	0.00
T_{23} - MS + 4 mg/l IBA	0.00	0.00	0.00	0.00	0.00	0.00
T_{24} - MS + 5 mg/l IBA	0.00	0.00	0.00	0.00	0.00	0.00
$T_{25} - \frac{1}{2}MS + 3 mg/l IBA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_{26} - \frac{1}{2} MS + 3 mg/l IBA + 3 mg/l NAA + 2\%$ Sucrose	<u>87.78</u>	<u>85.58</u>	<u>12.93</u>	<u>12.74</u>	<u>5.75</u>	<u>5.62</u>
$T_{27} - \frac{1}{2}$ MS + 3 mg/l IBA + 10 mg/l Coumarin	0.00	0.00	0.00	0.00	0.00	0.00
$T_{28} - \frac{1}{2}MS + 0.2 \text{ mg/l IB}$	0.00	0.00	0.00	0.00	0.00	0.00
T_{29} - $\frac{1}{2}$ MS + 1 mg/l IBA + 1 mg/l NAA	0.00	0.00	0.00	0.00	0.00	0.00
$T_{30} - \frac{1}{2}MS + 2 mg/l IBA + 1 mg/l NAA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_{31} - \frac{1}{2}MS + 5 mg/l IBA + 1 mg/l NAA$	0.00	0.00	0.00	0.00	0.00	0.00
$T_{32} - MS + 8\mu M BAP + 1\mu M NAA + 100 \mu M$	0.00	0.00	0.00	0.00	0.00	0.00
$\frac{\mathbf{T}_{33}}{\mathbf{IBA}} - \frac{1}{2} \mathbf{MS} + 8\mu \mathbf{M} \mathbf{BAP} + 1\mu \mathbf{M} \mathbf{NAA} + 100 \ \mu \mathbf{M}$	0.00	0.00	0.00	0.00	0.00	0.00

Table 4. Effect of acclimatization treatments on survival per cent (%) of Dendrocalamus hamiltonii

	Treatments	2022	2022	Deeled
Ireatments		2022	2023	Pooled
$A_1 - FYM + Soil + Sand (1:1:1)$		64.44	62.22	63.33
A ₂ - FYM+ Soil (1:1)		43.33	41.11	42.22
$A_3 - FYM + Soil + Coco Coir (1:1:1)$		54.44	55.56	55.00
A_4 - Soil + sand + Vermicompost (1:1:1)		78.89	81.11	80.00
SEM (±)		1.667	2.940	1.690
CD @ 5%		5.435	9.590	5.066
SEM (Y X T)				2.390
CD (Y X T) @ 5%				NS
CV %		4.79	8.49	6.88
17.	Economics	: NA		
18.	Conclusion	:		
19.	 treatment C₆ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min for the parameters of number of shoots (2.21), length of longest shoot (5.35 cm), establishment per cent (92.22 %) and contamination per cent (7.78 %). Whereas, number of days taken for sprouting were found better in C₄ - Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 3 Min (5.21 days). Shoot multiplication were recorded maximum in T₅ - MS + 4.0 mg/l BAP (10.44). Rooting parameters were responding to T₂₆ - 3mg/l IBA + 3mg/l IAA + 2% Sucrose among applied 33 rooting treatment combinations. Survival per cent were recorded higher in the acclimatization treatment A₄ - Soil + sand + Vermicompost (1:1:1) (80.00 %). 			
17.	farmers (English and Gujarati)/Information for scientific community (English)			
	It is advised to scientific community and tissue culture industries involved bamboo tissue			
	culture to use basal MS media for establishment and contamination control treatment i.e C6 -			
	Absolute Alcohol (70%) for 30 Sec + Mercuric Chloride (0.1%) for 5 Min; shoot multiplication			
	treatment <i>i.e</i> $T_5 - MS + 4.0 \text{ mg/l BAP}$; rooting treatment <i>i.e</i> $T_{26} - 3 \text{mg/l IBA} + 3 \text{mg/l IAA} + 2\%$			
	Sucrose and acclimatization treatment <i>i.e</i> A ₄ - Soil + sand + Vermicompost (1:1:1) for rapid			
	multiplication of Dendrocalamus hamiltonii through invitro regeneration techniques from nodal			
	explants.			
20.	Photographic plates			

