01.	*Experiment number and title (As per CJA)	:	15.4.3.49 and Effect of Different Bamboo Species Leaf Leachate on Germination and Seedling Growth of some Vegetable Crops
02.	Budget Head		352/12029
03.	Collaborative department, if any		NA
04.	Location and Agro-climatic sub region	:	Bamboo Resource Centre, College of forestry, NAU, Navsari – 396450 and AES-III (Heavy Raifall Zone), South Gujarat
05.	Background Information	:	The bamboo based agroforestry system can play an important role in enhancing productivity, sustainability and resource conservation. Many of useful bamboo species can occupy the same ecological niche as trees and are well suited for agroforestry (Tewari et al., 2015). As a component in agroforestry system, bamboos can reduce erosivity of rainfall/runoff and erodibility of soil and intercept more rainfall, maintain soil health by addition of organic matter through litter fall and improve microclimate by reducing soil and air temperature, solar radiation and wind speed which directly influence the soil evaporation and humidity (Tewari et al., 2015).Besides having many advantages of bamboos in agroforestry systems, various chemicals (allelochemicals) can be released through the process of volatization, stem flow or litter decomposition and from leaf aqueous leachate in soil. These leachates play a major role in the basic metabolism and affect numerous physiological and biochemical processes of intercrops (Rice, 1984; Narwal and Tauro, 1994). The allelochemicals present in the aqueous leaf leachate can inhibit the growth of some species at certain concentration and at the same time can stimulate the growth of same or different species at lower concentration (Rice, 1984). Allelopathy is of great interest because it can help to establish the combination of intercropping species in an agroforestry system in such a way that donor species have less negative impact on receptor crop. Present study is an attempt to find out the allelopathic effect of different bamboo species leaf leachates on some vegetable crops in control condition.
06.	Objectives		 To study the effects of leaf leachate of Bamboo species on germination of different vegetable crops seedling To study the effects of leaf leachate of Bamboo species on growth of different vegetable crop seedling
07.	Investigators	:	PI: Dr. Jayesh Pathak (Asst. Prof.) Agroforestry Co-PIs: Dr. M. B. Tandel (Asst. Prof.) Forestry Dr. M. K. Desai (Asst. Prof.) Agroforestry Associated Scientist: Dr. S. M. Patel (Asst. Prof.) Agroforestry
08.	Year of commencement	:	2019-20
09.	Season	:	NA

FORM – A : RESULT OF ONGOING EXPERIMENT

10.	Crop and variety			Factor $-A$ - Bamboo species T_1 -Bambusa bambos T_2 -Bambusa vulgaris (Green) T_3 -Bambusa balcooa T_4 -Dendrocalamus strictus T_5 -Dendrocalamus stocksiiFactor $-B$ - Vegetables V_1 - Brinjal V_2 - TomatoFactor $-C$ - Leaf leachate Concentration L_1 - Control					
				$\begin{array}{c} L_2 - 5 \ \% \\ L_3 - 10 \ \% \\ L_4 - 20 \ \% \\ L_5 - 50 \ \% \end{array}$					
				L ₆ - 100 %	L_{6}^{-} 100 %				
11.	Experi	mental details	:						
	(a)	Treatments	:	60 Treatment C	Com	binations			
	(b)	Design	:	Completely Randomized Design with Factorial Con (FCRD)					
	(c)	Replications	:	3					
	(d)	Plot size	:	Gross	-	m x m			
				Net	-	m x m			
12.	Cultur	al details							
	(a) Pre	evious crops and fertilizers	:	: NA					
	(b) So	wing date	:	: NA					
	(c) See	ed rate		NA					
	(d) Spa	acing		NA					
	(e) ma	nures and fertilizers		NA					
	(f) No.	of irrigation with date		NA					
	(g) Cu	ltural operations with date		NA					
	(h) Pla	int protection measures		NA NA					
	(i) Har	vesting date		NA					
13.	Soil ar	nalysis		NA					
14.	Input a	analysis		NA					
15.	Results (Table/s with statistical analysis and Interpretation)		:	Various concentration of leaf leachate of different bamboo species were applied to tomato and brinjal seed. Germination parameters, growth parameters and biomass mean parameters were recorded and presented in following tables. Remaining parameters will be recorded in prescribed time interval.					

Table 1. Effect of different concentration of leaf leachate of different bamboo species on germination parameters.

Treatment	Germination	Germination	Seed	Treatment	Germination	Germination	Seed
Combinations	Percentage	Energy (%)	Vigour	Combinations	Percentage	Energy (%)	Vigour
	(%)		Index		(%)		Index
$T_1V_1L_1$	66.67	0.67	744.48	$T_1V_2L_1$	76.67	0.77	3654.60
$T_1V_1L_2$	70.00	0.70	816.67	$T_1V_2L_2$	46.67	0.47	2335.06
$T_1V_1L_3$	76.67	0.77	753.92	$T_1V_2L_3$	63.33	0.63	2835.07
$T_1V_1L_4$	46.67	0.47	482.26	$T_1V_2L_4$	63.33	0.63	2752.74
$T_1V_1L_5$	83.33	0.83	888.85	$T_1V_2L_5$	63.33	0.63	3229.83
$T_1V_1L_6$	73.33	0.73	684.41	$T_1V_2L_6$	70.00	0.70	3472.00
$T_2V_1L_1$	86.67	0.87	1097.82	$T_2V_2L_1$	80.00	0.80	3573.33
$T_2V_1L_2$	73.33	0.73	1222.17	$T_2V_2L_2$	76.67	0.77	4377.86
$T_2V_1L_3$	73.33	0.73	950.85	$T_2V_2L_3$	46.67	0.47	2649.30
$T_2V_1L_4$	70.00	0.70	910.00	$T_2V_2L_4$	80.00	0.80	3496.00
$T_2V_1L_5$	73.33	0.73	928.85	$T_2V_2L_5$	46.67	0.47	2263.50
$T_2V_1L_6$	63.33	0.63	918.29	$T_2V_2L_6$	56.67	0.57	2361.25
$T_3V_1L_1$	83.33	0.83	1208.29	$T_3V_2L_1$	86.67	0.87	4128.38
$T_3V_1L_2$	83.33	0.83	916.63	$T_3V_2L_2$	53.33	0.53	2664.72
$T_3V_1L_3$	66.67	0.67	944.49	$T_3V_2L_3$	66.67	0.67	3433.51
$T_3V_1L_4$	80.00	0.80	1101.33	$T_3V_2L_4$	56.67	0.57	2752.27
$T_3V_1L_5$	80.00	0.80	1066.67	$T_3V_2L_5$	36.67	0.37	1662.37
$T_3V_1L_6$	86.67	0.87	967.82	$T_3V_2L_6$	83.33	0.83	3785.96
$T_4V_1L_1$	76.67	0.77	853.59	$T_4V_2L_1$	76.67	0.77	3368.37
$T_4V_1L_2$	73.33	0.73	870.18	$T_4V_2L_2$	46.67	0.47	2247.94
$T_4V_1L_3$	66.67	0.67	697.81	$T_4V_2L_3$	40.00	0.40	2086.67
$T_4V_1L_4$	70.00	0.70	639.33	$T_4V_2L_4$	63.33	0.63	2562.75
$T_4V_1L_5$	63.33	0.63	778.96	$T_4V_2L_5$	66.67	0.67	2800.14
$T_4V_1L_6$	80.00	0.80	946.67	$T_4V_2L_6$	50.00	0.50	1966.67
$T_5V_1L_1$	90.00	0.90	1197.00	$T_5V_2L_1$	80.00	0.80	3957.33
$T_5V_1L_2$	90.00	0.90	1146.00	$T_5V_2L_2$	66.67	0.67	3291.28
$T_5V_1L_3$	43.33	0.43	596.51	$T_5V_2L_3$	73.33	0.73	3461.18
$T_5V_1L_4$	60.00	0.60	640.00	$T_5V_2L_4$	46.67	0.47	1880.80
$T_5V_1L_5$	56.67	0.57	678.15	$T_5V_2L_5$	66.67	0.67	3069.04
$T_5V_1L_6$	70.00	0.70	898.33	$T_5V_2L_6$	70.00	0.70	2767.33

				sheeres on 810 ment	
Treatment	Shoot length (cm)	Root length	Treatment	Shoot length	Root length
Combinations		(cm)	Combinations	(cm)	(cm)
$T_1V_1L_1$	11.17	10.00	$T_1V_2L_1$	47.67	12.40
$T_1V_1L_2$	11.67	7.93	$T_1V_2L_2$	50.03	14.07
$T_1V_1L_3$	9.83	8.90	$T_1V_2L_3$	44.77	17.87
$T_1V_1L_4$	10.33	8.43	$T_1V_2L_4$	43.47	11.73
$T_1V_1L_5$	10.67	10.83	$T_1V_2L_5$	51.00	11.77
$T_1V_1L_6$	9.33	5.83	$T_1V_2L_6$	49.60	11.73
$T_2V_1L_1$	12.67	7.67	$T_2V_2L_1$	44.67	11.07
$T_2V_1L_2$	16.67	7.17	$T_2V_2L_2$	57.10	12.13
$T_2V_1L_3$	12.97	9.47	$T_2V_2L_3$	56.77	10.53
$T_2V_1L_4$	13.00	8.17	$T_2V_2L_4$	43.70	10.00
$T_2V_1L_5$	12.67	8.17	$T_2V_2L_5$	48.50	10.13
$T_2V_1L_6$	14.50	10.00	$T_2V_2L_6$	41.67	8.70
$T_3V_1L_1$	14.50	6.43	$T_3V_2L_1$	47.63	13.47
$T_3V_1L_2$	11.00	11.90	$T_3V_2L_2$	49.97	9.37
$T_3V_1L_3$	14.17	10.33	$T_3V_2L_3$	51.50	11.33
$T_3V_1L_4$	13.77	10.90	$T_3V_2L_4$	48.57	11.60
$T_3V_1L_5$	13.33	7.60	$T_3V_2L_5$	45.33	11.67
$T_3V_1L_6$	11.17	9.77	$T_3V_2L_6$	45.43	9.73
$T_4V_1L_1$	11.13	5.80	$T_4V_2L_1$	43.93	11.87
$T_4V_1L_2$	11.87	12.00	$T_4V_2L_2$	48.17	12.17
$T_4V_1L_3$	10.47	10.93	$T_4V_2L_3$	52.17	11.87
$T_4V_1L_4$	9.13	9.43	$T_4V_2L_4$	40.47	7.77
$T_4V_1L_5$	12.30	12.00	$T_4V_2L_5$	42.00	8.40
$T_4V_1L_6$	11.83	8.63	$T_4V_2L_6$	39.33	6.87
$T_5V_1L_1$	13.30	12.37	$T_5V_2L_1$	49.47	14.03
$T_5V_1L_2$	12.73	10.87	$T_5V_2L_2$	49.37	10.40
$T_5V_1L_3$	13.77	12.50	$T_5V_2L_3$	47.20	11.67
$T_5V_1L_4$	10.67	9.17	$T_5V_2L_4$	40.30	13.13
$T_5V_1L_5$	11.97	7.37	$T_5V_2L_5$	46.03	12.10
$T_5V_1L_6$	12.83	10.23	$T_5V_2L_6$	39.53	10.90

Table 7 Effect of Jif	Forward and an end that is a	floofloogboto of diff	for and harehad an asian an	an aruth na namatana
Table 2. Effect of dif	lierent concentration o	i leaf leachate of diff	lerent damboo species on	growin parameters.

Treatment Combinations	Fresh weight of Shoot (g)	Fresh weight of Root (g)	Fresh weight of plant (g)	Treatment Combinations	Fresh weight of Shoot (g)	Fresh weight of Root (g)	Fresh weight of plant (g)
$T_1V_1L_1$	5.67	0.83	6.50	$T_1V_2L_1$	22.33	2.00	24.33
$T_1V_1L_2$	4.67	1.17	5.83	$T_1V_2L_2$	17.33	4.00	21.33
$T_1V_1L_3$	4.67	1.10	5.77	$T_1V_2L_3$	17.00	2.00	19.00
$T_1V_1L_4$	5.33	1.10	6.43	$T_1V_2L_4$	12.00	0.97	12.97
$T_1V_1L_5$	5.00	0.93	5.93	$T_1V_2L_5$	26.33	2.60	28.93
$T_1V_1L_6$	5.33	1.00	6.33	$T_1V_2L_6$	23.33	2.00	25.33
$T_2V_1L_1$	5.33	0.93	6.27	$T_2V_2L_1$	18.67	1.50	20.17
$T_2V_1L_2$	5.67	0.87	6.53	$T_2V_2L_2$	22.67	2.00	24.67
$T_2V_1L_3$	6.00	0.90	6.90	$T_2V_2L_3$	20.00	2.97	22.97
$T_2V_1L_4$	6.00	0.90	6.90	$T_2V_2L_4$	11.33	0.90	12.23
$T_2V_1L_5$	5.33	0.90	6.23	$T_2V_2L_5$	14.67	1.57	16.23
$T_2V_1L_6$	6.33	0.90	7.23	$T_2V_2L_6$	12.00	1.23	13.23
$T_3V_1L_1$	5.00	0.90	5.90	$T_3V_2L_1$	28.33	2.00	30.33
$T_3V_1L_2$	4.33	0.70	5.03	$T_3V_2L_2$	13.67	1.27	14.93
$T_3V_1L_3$	6.00	0.73	6.73	$T_3V_2L_3$	14.67	1.97	16.63
$T_3V_1L_4$	6.00	0.80	6.80	$T_3V_2L_4$	12.33	0.97	13.30
$T_3V_1L_5$	7.33	0.93	8.27	$T_3V_2L_5$	10.00	0.97	10.97
$T_3V_1L_6$	6.00	0.97	6.97	$T_3V_2L_6$	15.33	1.13	16.47
$T_4V_1L_1$	6.00	1.00	7.00	$T_4V_2L_1$	19.00	1.67	20.67
$T_4V_1L_2$	4.67	0.87	5.53	$T_4V_2L_2$	11.67	0.97	12.63
$T_4V_1L_3$	6.00	0.70	6.70	$T_4V_2L_3$	15.33	1.67	17.00
$T_4V_1L_4$	6.00	0.80	6.80	$T_4V_2L_4$	7.67	0.87	8.53
$T_4V_1L_5$	5.33	0.90	6.23	$T_4V_2L_5$	8.33	0.70	9.03
$T_4V_1L_6$	5.67	0.87	6.53	$T_4V_2L_6$	7.33	0.60	7.93
$T_5V_1L_1$	5.67	0.90	6.57	$T_5V_2L_1$	19.67	3.00	22.67
$T_5V_1L_2$	6.00	0.93	6.93	$T_5V_2L_2$	11.33	1.33	12.67
$T_5V_1L_3$	6.67	0.90	7.57	$T_5V_2L_3$	9.67	1.00	10.67
$T_5V_1L_4$	4.33	0.70	5.03	$T_5V_2L_4$	7.00	1.00	8.00
$T_5V_1L_5$	4.67	0.70	5.37	$T_5V_2L_5$	13.00	1.67	14.67
$T_5V_1L_6$	5.33	0.90	6.23	$T_5V_2L_6$	8.33	1.00	9.33

