Biotechnology New Technical programme

1.	Title	Micropropagation of Malabar neem (Melia dubia)				
2.	Background	Melia dubia is a imperative multipurpose tree used in bio energy				
	Information	production, paper and pulp industry, plywood industry as well as				
		having medicinal uses. M. dubia belongs to the Meliaceae family. It				
		is significantly distributed in India, Iran, Pakistan, Argentin				
		Brazil, Bermuda, China, Australia, and Malaysia. All the parts of <i>M</i> .				
		dubia were used as a medicine and various kinds of treatment su				
		as for wound healing, treatment of skin, against insect pests, and				
		gastro intestinal infections. It has a antibacterial, antifungal,				
		antiviral, hypoglycaemic, antineoplastic, antileprosy and				
		antihelmintic properties. Conventional propagation of <i>M. dubia</i>				
		shows poor success due to hard stony seed coat. Therefore to cope				
		up with the elevated demand of various industries, in vitro				
		regeneration is the possible approach to prepare true to type				
		planuels. Inerefore it is an immense requisite to develop an optimized protocol for micropropagation of $M_{\rm clubic}$				
3	Objective	1 To standardize establishment media for node				
5.	Objective	2 To standardize multiplication media				
		3. To standardize the media for rooting of <i>in vitro</i> regenerated				
		shoots				
		4. To standardize pot mixture for acclimatization of <i>in vitro</i>				
		regenerated plantlets				
4.	Principal	1. Dr. Swati Patel (Assistant Professor) : PI				
	Investigator &	2. Dr. R. M. Patel (Principal & Dean) : Co-PI				
_	Associates					
5.	Location and	Aspee Snakilam Biotechnology Institute, NAU, Surat				
	Agro-climatic	Greeth Carls and Harres Dainfall Zama H				
6	Zone: Nome of Des	12248				
0.	Scheme & B H	12240				
	Scheme & D.H.					
7.	Year	2021				
8.	Crop & variety	Malabar neem (<i>Melia dubia</i>)				
		Explant: Node				
9.	Experiment					
	detail	Statistical design.				
		Staustical design.				
		• CRD (Completely Randomized Design) with 10 bottles per				
		treatment and 3 repetition				
		• 5 repetitions for root induction and acclimatization				
	1					

Treatment	Media	
no.		
TE_1	MS	
TE ₂	MS + 0.1 mg/L BAP	
TE ₃	MS + 0.5 mg/L BAP	
TE ₄	MS + 1.0 mg/L BAP	
TE ₅	MS + 1.5 mg/L BAP	
TE ₆	MS + 2.0 mg/L BAP	
TE ₇	MS + 0.1 mg/L BAP + 0.1 mg/L NAA	
TE_8	MS + 0.5 mg/L BAP + 0.1 mg/L NAA	
TE ₉	MS + 1.0 mg/L BAP + 0.2 mg/L NAA	
TE ₁₀	MS + 1.5 mg/L BAP + 0.2 mg/L NAA	
TE ₁₁	MS+ 2.0 mg/L BAP + 0.5mg/L NAA	
		
Treatments f	or shoot multiplication	
Treatment	Media	
no.		
TM_1	MS + 0.25 mg/L BAP	
TM ₂	MS + 0.5 mg/L BAP	
TM ₃	MS + 1.0 mg/L BAP	
TM ₄	$MS + 0.25 mg/L BAP + 2.5 mg/L GA_3$	
TM ₅	$MS + 0.5 \text{ mg/L BAP} + 2.5 \text{ mg/L }\overline{GA_3}$	
TM ₆	$MS + 1.0 \text{ mg/L BAP} + 2.5 \text{ mg/L GA}_3$	
TM_7	MS + 0.25 mg/L BAP + 30 mg/L Ader	
	sulphate	
TM ₈	MS + 0.5 mg/L BAP + 30 mg/L Ader	
	sulphate	
TM ₉	MS + 1.0 mg/L BAP + 30 mg/L Ader	
	sulphate	
TM_{10}	$MS + 0.25 \text{ mg/L BAP} + 2.5 \text{ mg/L GA}_3 +$	
	mg/L Adenine sulphate	
TM_{11}	$MS + 0.5 mg/L BAP + 2.5 mg/L GA_3 +$	
	mg/L Adenine sulphate	
TM_{12}	$MS + 1.0 \text{ mg/L BAP} + 2.5 \text{ mg/L GA}_{3} +$	
	mg/L Adenine sulphate	
TM ₁₀ TM ₁₁ TM ₁₂ Treatments f	MS + 0.25 mg/L BAF mg/L Adenine sulphate MS + 0.5 mg/L BAP mg/L Adenine sulphate MS + 1.0 mg/L BAP mg/L Adenine sulphate	
	Madia	
Treatment	wieura	
Treatment no.	Media	
Treatment no. ΓR ₁	1/2 MS	
Treatment no. TR ₁ TR ₂	$\frac{1}{2} \text{MS}$ $\frac{1}{2} \text{MS} + 0.1 \text{ mg/L} \text{IBA}$	

			TR ₄	¹ / ₂ MS + 1.0 mg/L IBA				
			TR ₅	MS + 0.1 mg/L IBA				
			TR ₆	MS + 0.5 mg/L IBA				
			TR ₇	MS + 1.0 mg/L IBA				
			_					
		D)	D) Treatments for acclimatization of <i>in vitro</i> regenerated					
			plantiets					
			l reatment	Treatment Pot Mixture				
			по. тн.	no. TIL Soil: vormicoppost (1:1)				
				TH_1 Soli: vermicompost (1:1) TH_2 Soli: vermicompost (1:1)				
				$1H_2$ Soil: vermicompost: cocopeat (1:1:1)				
			IH ₃	TH ₃ Soil: vermicompost(1:2)				
			TH ₄ Soil: cocopeat: vermicompost (1:2:1)					
			TH ₅	Sand: Soil: vermicompost (1	:1:1)			
			TH_6	Cocopeat: vermicopost:sand	(1:1:1)			
10.	Observation to	A)	Shoot establishment					
	be recorded		1. Contamination (%)					
			2. Establishment of explants (%)					
			3. Frequency of explants showing bud break (%)					
		D)	4. Days taken for shoot induction					
		D)	Shoot multiplication 1 Number of shoots per culture					
			 Number of shoots per culture Shoot length (cm) 					
			2. Shoot length (cm) 3. Number of internodes					
		C)	Root induction					
			1. Frequency of shoots showing root induction (%)					
			2. Days to root induction					
			3. Root length (cm)					
			4. Number of root per shoot					
		D)	Hardening of regenerated plantlets					
			1. Percent survival					
			2. Days taken for establishment					
			3. Shoot length (cm)					
			4. Number o	f leaves after 4 weeks				
11.	Expected	•	A well optimi	zed protocol for production o	f true to type			
	outcome		plantlets of M. Dubia					
		•	Exploited for commercial mass clonal propagation of					
		1	economically important species					