Industrial Microbiology New Technical programme

1.	Title	Optimization of physiochemical parameters for protease production
		by bacterial isolate under solid state fermentation (SSF)
		(NTP. Sr. No: 17.5.3.20)
2.	Background	A broad array of proteases is produced from microorganisms either
	Information	intracellular or extracellular. Extracellular proteases are significant for
		the hydrolysis of proteins in cell-free environments. Today, proteases
		characterize one of the prime industrial enzymes, and hold
		approximately 60% share of worldwide sales of enzymes. Protease
		possesses considerable industrial potential due to their biochemical
		diversity and is a highly exploitable enzyme in food, leather, detergents,
		industrially applicable protocol and waste management etc. Although,
		different sources must of them could not resist drestic environmental
		anterent sources, most of the sources are incorpoble to produce required
		changes and most of the sources are incapable to produce required
		withstand harsh environmental conditions should be isolated for the
		enhanced production of such enzymes. Solid State Fermentation has
		been adopted to fulfil the demands as it is more simple, requires lower
		capital, has superior productivity, simpler fermentation media and
		absence of rigorous control of fermentation parameters, uses less water
		and produces lower wastewater, has easier control of bacterial
		contamination and requires low cost for downstream processing as far
		as economic is concern. In the present study a statistical approach will
		be employed in which a Plackett-Burman design will be used for
		identifying significant variables influencing protease production by the
		screened isolate. The levels of the significant variables are further
		optimized using response surface methodology-CCD.
3.	Objective	i. Screening of potential protease producers.
		ii. Identification of the screened isolate(s) using molecular
		methodology.
		iii. Optimization of physical (pH, Temperature, moisture content etc.)
		and chemical (C source, N source and minerals) process parameters
		for the Protease production.
		iv. Identification of significant components using Plackett-Burman
		design for the optimum protease production.
		v. Level optimization of screened variables (components) on the
		vi Validation of the level of selected components for the maximum
		protease production
4	Princinal Investigator	1 Dr. Vimakumar Prajapati, Assistant Professor
	& Associates	(Industrial Microbiology) : PI
		2. Dr. R. M. Patel (Principal & Dean) : Co-PI
5.	Location and Agro-	Aspee Shakilam Biotechnology Institute, NAU, Surat
	climatic zone:	
6.	Name of Res Scheme	12248

	& B.H.	
7.	Year	2021
8.	Crop & variety	-
9.	Experiment detail	Screening will be carried out using samples collected from municipal green waste management site (SMC, Surat) and dairy effluent (Sumul, Surat) on casein/skimmed milk agar plate. Protease production will be assessed using the standard assay procedure at every 24 h of interval up to 7 days. Wheat bran will be taken as solid substrate for the production of protease and different processes parameter will be optimized using One Factor At a Time Methodology (OFAT) followed by Plackett-Burman design and Response Surface Methodology-CCD.
		One gram of the collected sample will be suspended in 9 mL of sterile distilled water. After a serial dilution of this suspension with sterile distilled water, 100 μ L from each diluted suspension will be spreaded on skim milk agar (SMA; 2% skim milk, 1% glucose, 3% agar and pH 9.0) plates followed by incubation at 37C for 24-48 h.
		Genomic DNA extraction and the polymerase chain reaction (PCR) for amplification of the 16S rDNA of the selected potential bacterial isolates will be carried out. PCR products will be purified followed by sequencing. The 16S rDNA sequences will be analyzed using a free computer Program. The similarities of the sequence will be searched with the BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) search program. The sequence is aligned with the similar sequences by using Clustal Omega (http://www.ebi.ac.uk/Tools/msa/clustalo/) and a phylogenetic tree will be constructed using Molecular Evolution Genetic Analysis (MEGA).
		Protease activity will be determined by using azo/casein as a substrate with some modifications of the method described by Kreger and Loekwood (1981). In brief, the reaction mixture contains (500 ml of 1.0% azo/casein in 50 mM Tris HCI, pH 9.0 and 1 ml of enzyme solution) incubated for 30 min at 40C or optimum temperature. The reaction is stopped by adding 2.8 ml of 5.0% (w/v) trichloroacetic acid (TCA), and was kept at 4C for 15 min. The precipitate was removed by centrifugation at 8,000 rpm for 20 min. A 2 ml of the supernatant was added to 2 ml of 1.0M NaOH and the absorbance was measured at 440 nm using a UV-visible spectrophotometer. Or else supernatant will be subject for protein estimation using Follin Lowery methology.
		Different Physicochemical parameter including incubation time, pH (4 to 11), Temperature (30 to 70), moisture content as well effect of additional carbon source at 1% (Glucose, fructose, maltose, lactose) and various organic and inorganic nitrogen sources (Casein, YE, peptone, NH ₄ NO ₃ , NH ₄ CL, (NH ₄) ₂ SO ₄) at 1% and metal ions if any will be optimized using one factor at a time methodology via supplementing it to SSF.
		Selected parameters via OFAT method will be subjected to Plackett-Burman design to screen the significant components affecting the protease production followed Response Surface Methodology-CCD to achieve the level optimization.
10.	Observation to be recorded	 Initial screening will be done based on the plate assay to check the zone of clearances (Skimmed milk/Casein Agar plate). Identification of the potential isolate will be done using 16s rDNA universal primer. Best carbon and nitrogen source will be screened out using OFAT

		and Plackett-Burman Design.4. Level optimization of the screened components will be checked using RSM-CCD
11.	Expected outcome	 Potent protease producing microbial strain will be screened, and subjected for molecular identification. Physicochemical parameters for the protease production will be optimized under SSF using PBD and RSM-CCD followed by validation of the model. Economically sustainable medium for the protease production will be formulated using the adopted strategy.